MATHEMATICS SCHEME OF WORK GRADE 4 TERM THREE

NAME	
TSC NO.	
SCHOOL	

GRADE 4 SCHEMES OF WORK MATHEMATICS ACTIVITIES TERM 3

Week	Lesson	Strand/T heme	Sub Strand/Su	Specific Learning Outcomes	Key Inquiry Question(S)	Learning Experience	Learning Resources	Assessment	Remark s
			b theme						

1			OPENING OF SCHOOLS				
2	1	MONEY	By the end of the sub	How can	Learners in	KLB	
			strand, the learner should	you save	pairs/groups to discuss	Visionary	
			identify money people	money?	auestions involving	Mathematics	
			pay to the county		money in real life	pg 132-134	
			government for provision		situations	Real /	
			of services			imitation	
						money, price	
			Des the set of the set	TT	The sum sum in	IISU	
	2	MONEY	By the end of the sub	How can	Learners in		
			be able to	you save	market fee cess	Visionary	
			identify money people	money?	parking fee and	Mathematics	
			pay to the county		business permit as	pg 132-134	
			government for provision		money people pay to	Real /	
			of services		county government for	imitation	
					provision of services	money, price	
						list	
	3	MONEY	By the end of the	How can	Learners in	KLB	
			sub strand, the	you save	pairs/groups/	Visionary	
			learner should be	money?	individually to play	Mathematics	

	4	Geomet ry	Position And Direction	able to use IT devices for learning and enjoyment, appreciate the use of money in real life. By the end of the sub strand, the learner should be able to: demonstrate a clockwise	How can you change your position?	digital games involving money. Learners in groups/pairs/individu ally to demonstrate a clockwise turn.	pg 132-134 Real / imitation money, price list KLB Visionary Mathematics pg 139-141	
				and an anti-clockwise turn in the environment			Representatio n of different angles	
	5	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to: demonstrate a clockwise and an anti-clockwise turn in the environment	How can you change your position?	Learners in groups/pairs/individu ally to demonstrate a clockwise turn.	KLB Visionary Mathematics pg 139-141 Representatio n of different angles	
3	1	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to demonstrate a quarter turn, half turn and full turn in the environment,	How can you change your position?	Learners in groups/pairs/individua lly to demonstrate an anti-clockwise turn	KLB Visionary Mathematics pg 139-141 of different angles	
	2	Geomet ry	Position And	By the end of the sub strand, the learner	How can you change your	Learners in groups/pairs/individua lly to demonstrate an	KLB Visionary Mathematics	

		Direction	should be able to demonstrate a quarter turn, half turn and full turn in the environment,	position?	anti-clockwise turn	pg 139-141 Representatio n of different angles	
3	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to identify quarter, half and full turns in the environment	How can you change your position?	Learners in groups/pairs/ individually to demonstrate a quarter turn in both directions. Learners in groups/pairs/individua lly to demonstrate a half turn	KLB Visionary Mathematics pg 141-144 Representatio n of different angles	
4	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to identify quarter, half and full turns in the environment	How can you change your position?	Learners in groups/pairs/ individually to demonstrate a quarter turn in both directions. Learners in groups/pairs/individua lly to demonstrate a half turn	KLB Visionary Mathematics pg 141-144 Representatio n of different angles	
5	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to identify quarter, half and full turns in the environment	How can you change your position?	Learners in groups/pairs/individua lly to demonstrate a full turn	KLB Visionary Mathematics pg 141-144 Representatio n of different angles	

4	1	Geomet	Position	By the end of the sub	How can	Learners in	KLB	
		ry	And	strand, the learner	you change	groups/pairs/individua	Visionary	
			Direction	should be able use IT	your	lly to play digital	Mathematics	
				devices for learning	position?	games involving	pg 141-144	
				and enjoyment,		position and direction.	10	
				appreciate use of			Representatio	
				position and			n of different	
				direction in real life			angles	
				situations.				

5	1	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to demonstrate a quarter turn, half turn and full turn in the environment,	How can you change your position?	Learners in groups/pairs/individua lly to demonstrate an anti-clockwise turn	KLB Visionary Mathematics pg 141-144 Representatio n of different angles	
	2	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to identify quarter, half and full turns in the environment	How can you change your position?	Learners in groups/pairs/ individually to demonstrate a quarter turn in both directions. Learners in groups/pairs/individua lly to demonstrate a half turn	KLB Visionary Mathematics pg 145-147 Representatio n of different angles	
	3	Geomet ry	Position And	By the end of the sub strand, the learner should be able to identify	How can you change your	Learners in groups/pairs/ individually to	KLB Visionary Mathematics	

		Direction	quarter, half and full turns in the environment	position?	demonstrate a quarter turn in both directions. Learners in groups/pairs/individua lly to demonstrate a half turn	pg 145-147 Representatio n of different angles	
4	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to identify quarter, half and full turns in the environment	How can you change your position?	Learners in groups/pairs/individua lly to demonstrate a full turn	KLB Visionary Mathematics pg 145-147 Representatio n of different	
5	Geomet ry	Position And Direction	By the end of the sub strand, the learner should be able to identify quarter, half and full turns in the environment	How can you change your position?	Learners in groups/pairs/individua lly to demonstrate a full turn	angles KLB Visionary Mathematics pg 145-147 Representatio n of different angles	

6	1	Geomet	ANGLES	By the end of the	Where can	Learners in	KLB	
		ry		sub strand, the	you find	pairs/groups	Visionary	
		_		learner should be	angles in	/individually to	Mathematics	
				able to:	the	identify angles		

2	Geomet	ANCLES	identify angles in the environment	environme nt?	in the environment. Learners in pairs/groups to identify right angles in the environment	pg 145-147 Representatio n of different angles	
2	ry		strand, the learner should be able to identify different types of angles in the environment,	you find angles in the environme nt?	pairs/groups to identify right angles in the environment. Learners in pairs/groups to identify acute angles in the environment	Visionary Mathematics pg 145-147 Representatio n of different angles	
3	Geomet ry	ANGLES	By the end of the sub strand, the learner should be able to identify different types of angles in the environment,	Where can you find angles in the environme nt?	Learners in pairs/groups to identify acute angles in the environment. Learners in pairs/groups to identify obtuse angles in the environment	KLB Visionary Mathematics pg 145-147 Representatio n of different angles	
4	GEOM ETRY	ANGLES	By the end of the sub strand, the learner should be able to compare angles practically	Where can you find angles in the environme nt?	Learners in pairs/groups to identify obtuse angles in the environment. Learners in pairs/groups to identify reflex angles in the environment	KLB Visionary Mathematics pg 145-147 Representatio n of different angles	

	5	GEOM ETRY	ANGLES	By the end of the sub strand, the learner should be able to compare angles practically	Where can you find angles in the environme nt?	Learners in pairs/groups to identify obtuse angles in the environment. Learners in pairs/groups to	KLB Visionary Mathematics pg 145-147 Representatio	
						identify reflex angles in the environment	n of different angles	
7	1	GEOM ETRY	ANGLES	By the end of the sub strand, the learner should be able to use IT devices for learning and enjoyment, appreciate use of angles in real life situations.	Where can you find angles in the environme nt?	Learners in pairs/groups to compare angles using a right angle. Learners in pairs/groups/individua lly to play digital games and learn more about angles	KLB Visionary Mathematics pg 145-147 Representatio n of different angles	
	2	SHAPES	2-D SHAPES	By the end of the sub strand, the learner should be able to: identify different shapes in the environment	How can you identify a 2-D shape?	Learners in pairs/groups/individua lly to identify shapes in the environment	KLB Visionary Mathematics pg 148-149 Cut outs of rectangles, circles, and triangles of different	
	3	SHAPES	2-D SHAPES	By the end of the sub strand, the learner should be able to: identify line of	How can you identify a 2-D	Learners in pairs/groups to identify line of symmetry by folding	KLB Visionary Mathematics	

				symmetry, practically	shape?	the shape into two equal parts and identify the fold line as line of symmetry	pg 148-149 Cut outs of rectangles, circles, and triangles of different	
	4	SHAPES	2-D SHAPES	By the end of the sub strand, the learner should be able to: identify line of symmetry, practically	How can you identify a 2-D shape?	Learners in pairs/groups to identify line of symmetry by folding the shape into two equal parts and identify the fold line as line of symmetry	KLB Visionary Mathematics pg 148-149 Cut outs of rectangles, circles, and triangles of different	
	5	SHAPES	2-D SHAPES	By the end of the sub strand, the learner should be able to: make patterns using different shapes	How can you identify a 2-D shape?	Learners in pairs/groups/individua lly to make patterns using squares, rectangles and triangles	KLB Visionary Mathematics pg 148-149 Cut outs of rectangles, circles, and triangles of different	
8	1	SHAPES	2-D SHAPES	By the end of the sub strand, the learner should be able to: identify properties of 2-D	How can you identify a 2-D	Learners in pairs/groups to identify properties of a square practically.	KLB Visionary Mathematics	

			shapes practically	shape?	Learners in pairs/groups to identify properties of a rectangle practically	pg 150-151 Cut outs of rectangles, circles, and triangles of different	
2	SHAPES	2-D SHAPES	By the end of the sub strand, the learner should be able to: identify properties of 2-D shapes practically	How can you identify a 2-D shape?	Learners in pairs/groups to identify properties of a square practically. Learners in pairs/groups to identify properties of a rectangle practically	KLB Visionary Mathematics pg 150-151 Cut outs of rectangles, circles, and triangles of different	
3	SHAPES	2-D SHAPES	By the end of the sub strand, the learner should be able to: use IT devices for learning and enjoyment, appreciate using shapes in real life situations	How can you identify a 2-D shape?	Learners in pairs/groups to identify properties of a triangle practically. Learners in pairs/groups to use IT devices to learn more about 2-D shapes and make patterns	KLB Visionary Mathematics pg 150-151 Cut outs of rectangles, circles, and triangles of different	
4	DATA	DATA	By the end of the sub strand, the learner should be able to: represent data involving real life situations using frequency tables	How can you represent data?	Learners in groups to collect and record data involving real life situations using tally marks	KLB Visionary Mathematics pg 155-156 Data from different	

							sources	
	5	DATA	DATA	By the end of the sub strand, the learner should be able to: represent data involving real life situations using frequency tables	How can you represent data?	Learners in groups to collect and record data involving real life situations using tally marks	KLB Visionary Mathematics pg 155-156 Data from different sources	
9	1	HANDL ING	DATA	By the end of the sub strand, the learner should be able to: work out questions involving frequency tables representing real life situations	How can you represent data?	Learners in pairs/groups/ individually to represent data collected from real life situations using frequency tables	KLB Visionary Mathematics pg 155-156 Data from different sources	
	2	DATA	DATA	By the end of the sub strand, the learner should be able to: work out questions involving frequency tables representing real life situations	How can you represent data?	Learners in pairs/ groups/individually to interpret frequency tables representing real life situations	KLB Visionary Mathematics pg 155-156 Data from different sources	
	3	HANDL ING	DATA	By the end of the sub strand, the learner should be able to: identify where frequency tables are used in real life	How can you represent data?	Learners in pairs/groups/individua lly to work out questions involving frequency tables representing real life	KLB Visionary Mathematics pg 157-158	

	4	HANDL ING	DATA	By the end of the sub strand, the learner should be able to: identify where frequency tables are used in real life	How can you represent data?	situations Learners in pairs/groups/individua lly to work out questions involving frequency tables representing real life situations	Data from different sources KLB Visionary Mathematics pg 157-158 Data from different sources	
	5	DATA	DATA	By the end of the sub strand, the learner should be able to: appreciate use of frequency tables in representing data in real life situations.	How can you represent data?	Learners in pairs/ groups to discuss where frequency tables are used. Learners in pairs/groups/individua lly to use IT devices and learn more on data collection.	KLB Visionary Mathematics pg 157-158 Data from different sources	
10	1	Algebra	Use Of Letter	By the end of the sub strand, the learner should be able to: represent the unknown in real life situations using letters,	How can you simplify algebraic expressions ?	Learners in pairs/groups/individua lly to represent the unknown in real life situations using letters	KLB Visionary Mathematics pg 165-166 Information from different sources	
	2	Algebra	Use Of Letter	By the end of the sub strand, the	How can you	Learners in pairs/groups/individua lly to represent the	KLB Visionary	

			learner should be	simplify	unknown in real life	Mathematics	
			able to:	algebraic	situations using letters	pg 165-166	
			represent the unknown	expressions		10	
			in real life situations	2		Information	
			using letters,	•		from	
			_			different	
						sources	
3	Algebra	Use Of	By the end of the sub	How can	Learners in	KLB	
		Letter	strand, the learner	you	pairs/groups/individua	Visionary	
			should be able to:	simplify	lly to form algebraic	Mathematics	
			form algebraic expressions to represent	algebraic	expressions to represent real life	pg 165-166	
			real life situations	expressions	situations	Information	
				-		from	
						different	
						sources	
						bourees	
4	Algebra	Use Of	By the end of the sub	How can	Learners in	KLB	
		Letter	strand, the learner	you	pairs/groups/individua	Visionary	
			should be able to:	simplify	lly to play digital	Mathematics	
			use IT devices for learning and	algebraic	games involving algebraic expressions.	pg 167-168	
			enjoyment	expressions		Information	
			chjoyment,	?		from	
						different	
						sources	
5	Algebra	Use Of	By the end of the sub	How can	Learners in	KLB	
		Letter	strand, the learner	you	pairs/groups/individua	Visionary	
			should be able to:	simplify	lly to play digital	Mathematics	
			appreciate the use of	algebraic	games involving	pg 167-168	
			algebraic expressions	expressions	algebraic expressions.		
				?		Information	
						from	
						different	
						sources	

11		END OF TERM			
		EXAM			